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A GEOMETRICAL INTERPRETATION OF THE 
POINCARh-CHETAYEV-RUMYANTSEV EQUATIONS? 

S. A. ZEGZHDA and M. P. YUSHKOV 

St Petersburg 

By introducing a tangential space to the manifold of all possible positions of a mechanical system of equations, its motions are 
written in the form of a single vector equation, which has the form of Newton’s second law. From this equation, written for ideal 
non-linear time-dependent non-holonomic first-order constraints, the Poincark-Chetayev-Rumyantsev equations, as well as other 
fundamental types of equations of motion, are obtained. 0 2002 Elsevier Science Ltd. All rights reserved. 

A number of papers by Rumyantsev [l-5], based on the Poincar&Chetayev approach, are devoted to 
investigating the equations of motion of non-linear non-holonomic systems. 

Suppose the motion of a free mechanical system is described, in generalized coordinates q”, by 
Lagrange’s equations of the second kind 

where Q, is the generalized force corresponding to the coordinate q”, and M is the mass of the whole 
system. Here and henceforth, summation over repeated sub- and/or superscripts is assumed; the indices 
p, CT, ‘t and E take the values 1, 2, . . . , s; a, 0, y and 6 take the values 0, 1, 2, . . . , s; x and v take the 
values 1,2, . . . , k; h and p take the values 1,2, . . . , 1, where 1 = s -k. 

We will introduce a manifold of all those positions of the mechanical system in question which it can 
have at a given instant of time t. We will fix a certain point of this manifold, specified by the coordinates 
4”. Suppose the old and new coordinates of this point are expressed in terms of one another by the 
formulae 

q” = q%?*). q1p = q%,q) 

or, in differential form 

The quantities 6q” and 6qf, connected by these relations, are called the contravariant components of 
the tangential vector 6y, and the whole set of vectors Sy is called a tangential space to the manifold 
introduced above at this point [6]. The vector Sy can be conveniently represented in the form 

while the set of vectors e, is considered as the basis of the tangential space in the system of coordinates 
q”. We will introduce a Euclidean structure in the tangential space using the invariance of the positive- 
definite quadratic form 

Here g, and g& are coefficients which occur in the expression for the kinetic energy in coordinates q” 
and qt respectively. 

The generalized forces Q,, which occur in system of equations (l), are, by definition, the coefficients 
of the variations of the coordinates 6q” in the expression for the possible elementary work &I. Using 

tPrik1. Mat. Mekh. Vol. 65, No. 5, pp. 746154,2001. 

723 



724 S.A. Zegzhda and M. P. Yushkov 

the continuous numbering i = 1, 2, 3 . . . .  for the notation both of the Cartesian coordinates xi of the 
points of application of the forces and for the projections Xi of these forces, we can write 

Taking into account the fact that 

we obtain 

8A = X l ~ x  i 

axi - ° - a x i s  p 8x,=  q q. 

• p 
8A = Qo~x/° = Q ~ / ,  (2) 

- -  X .  Oxi 3q ° Qo = Xi oxi Q~ = = Q.o Oq~" , Oqp, ~)qO, 

where 

Expression (2) is a linear invariant differential form of the vector 6y. Its coefficients Qo and Q'~ when 
using the coordinates q° and q,P respectively are the components of the covector Y [6]. 

Using the Euclidean structure of the tangential space, we will represented 8A in the form of a scalar 
product 

~SA = Y. By, Y = Qoe ° 

Here e ° are the vectors of the mutual basis, given by the relations 

0, o # ' ~  
e ° . e ~ = ~ 5 ~  ° =  I, o = x  

Hence, from the expressions go~ = eo • e, it follows that 

e. t = go.re °, e ° = ga'te, t 

The coefficients g~  are the elements of the matrix inverse to the matrix with elements g~r. 
The introduction of the covector Y in the expression for the possible elementary work 8A enables 

us to consider the system of equations (1) as a single vector equality 

M W = Y  

Here 

l(a 0r  r]eo W = Woe ° = ~ -  ~ O¢a 9 )  = (g°xq* + Fa'al3q'~q~)ea = W°% = 

= (~a + F~13qaql3)% (3) 

We will now investigate the non-flee motion. By the constraint elimination principle, the application 
of forces leads to the occurrence of a reaction R, and hence we will have 

MW = Y + R (4) 

Consider non-linear time-dependent non-holonomic first-order constraints, specified in the 
form 

flx(t,q,q) = 0 (5) 
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Differentiating these constraints with respect to time, we obtain 

f;((r,q,cj,ii)la:+6*(t,q,Q)ijb +a;;"(t,q,tj)= 0, l= s-k (6) 

Note that linear non-holonomic second-order constraints can also be specified in this form. 
Holonomic constraints lead to relations (6) after double differentiation with respect to time. 

The introduction of a tangential space and of the vector W, specified by formula (3), enables us to 
write the system of equations (6) in vector form 

It can be seen from these expressions that when there are constraints in s-dimensional tangential space 
it is best to introduce into consideration a subspace, the basis of which is the vectors a’+% (K-space). 
Then, the whole space can be represented in the form of the direct sum of this space and its orthogonal 
complement with basis ah. (L-space), where 

Note that this subdivision of the tangential space by constraint equations corresponds to fixed values 
of the variables t, qa, 4". 

It was shown in (7), that the component WK of the vector W, belonging to K-space, is completely 
defined by the constraint equations (7) if 

lh""l#O (8) 

where 

hx” = ai+X a’+V 

It has also been shown that in the case of ideal constraints, Eq. (4) takes the form 

MW = Y + &a’+” (9) 

Thus, vector equation (8) expresses the law of motion of both holonomic and non-holonomic systems, 
in which, when there are ideal constraints, the generalized accelerations q” satisfy system of equations 
(6), while the vectors a’+% satisfy condition (8). It is essential that this equation has a vector form, invariant 
to the choice of the system of coordinates in which the constraint equations are specified and in which 
the motion is described. Hence, we obtain from this the fundamental forms of the equations of motion 
of non-holonomic systems and we thereby show their equivalence. 

Projecting Eq. (9) onto any constructed system of vectors ai, forming the basis of L-space, we obtain 
the following system of scalar equations 

MW,ak=Y.a,, (10) 

Supplementing Eqs (10) by Eqs (7), we obtain a closed system of equations, which enables us to obtain 
the law of motion in the form 

W = I% q, 4) 

The reduction of the problem to this equation can be regarded, by Novoselov’s expression [8, p.281, as 
“the reduction of the problem of non-holonomic mechanics to a conventional problem of the mechanics 
of holonomic systems”. 

The specific form of Eqs (10) depends both on the method by which the system of vectors aA is specified 
and on the form in which the scalar products MW * ai are expanded. We will consider the fundamental 
forms of Eqs (10). 

The integrable differential constraints and first-order linear non-holonomic constraints will be 
regarded as special cases of the constraints specified by Eqs (5). By assumption, the vectors a’+” satisfy 
condition (8) and hence it follows from the constraint equations that the generalized velocities 4” 
for specified values of the variables t and qa can be expressed in terms of the independent variables 
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rat. In [&lo] they are called kinematic characteristics, while in [l-5, 11-171 devoted to the 
Poincare-Chetayev equations, they are called Poincare parameters. The variables d? are given by the 
functions 

supplementing which by the functions 

u* I+% =f*‘+“(r,4,4)=fix(r.q,~) 

we will have 

4” = 40(&q. u*) (11) 

Suppose at least one of these expressions fpdt is not a total differential or cannot be reduced to it. 
Then, as is well known, the variables 

cannot be regarded as a new system of Lagrangian coordinates. They are therefore called 
auasi-coordinates. and the auantities +c” = u’: are called auasi-velocities. For linear constraints 
ihe generalized ‘velocities and quasi-velocities (Poincare -parameters) 
relations 

u,P =az(t,q)gO +a,P(r,q), 4” =b,“(r,q)uZ +bt(r,q) 

or in abbreviated form 

are connected by the 

The use of the variables ~‘1 enables us to introduce the vectors 

aa 
aup (I ag 

=Le, 8,=-e 
ag 7 0 au* 

such that 

ap.aT =Sf 

A system of vectors aA then forms a basis of L-space, since 

(13) 

au I+% a’+% = *e 
ag 

‘, a’+%.aA co 

Consideration of the constraint equations by representing the generalized velocities in the form 

4 ‘a =V(r,q,~! ,..., IJ!) 

in accordance with Rumyantsev’s expression [2, p. 31 means that “the parametrization of the constraints 
imposed on the system has been carried out”. When this is so the basis of the L-space becomes known 
and is specified by the formulae 

Hence, the splitting of the tangential space by the constraint equations into K and L subspaces can be 
achieved by the parametrization. Then, the basis of the L-space is known, which is also exactly necessary 
in order to change to the specific form of writing Eqs (10). 

If the constraints are linear, their parametrization, as follows from (12), will be 
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Consequently, in this case we have 

The vector MW, which occurs in Eq. (lo), can be represented in the form 

m - d(m) ; 
dt (14) 

The generalized velocities 4” will be considered to be functions of all the variables u!, and only in the 
final expressions, taking the constraint equations into account, will we assume uf+% = 0. With this 
approach we will have 

m = EXaP - aT’ aP 
ag au: av,p 

(15) 

where T* = F(t, q, u) are functions of the variables t, q” and UT, obtained by substituting representations 
(11) into the expression for the kinetic energy T = T(t, q, 4). 

If follows from (14) and (15) that 

m a =daT+aT’ 
’ 1 dt au: au: 

-sip aax 

Taking expressions (13) into account we obtain 

iP.an =-ap .a, 

and, consequently 

fl.a, =daT’_m.i, 
dt au? 

Since 

av . av 
fb=p' ea=p 

aT’ aT aT ag 
r=-+-- a4 aqI ag a45 

we have 

--- 

It follows from (16) and (17) that Eqs (10) can be represented in the form 

d aT* aT’ ----_ 
dt au: ad 

where 

ag’a, T”=_ 
d aga aqr= - 

au," aq= 1 dt au; ---j--p QI=Q$$ 
* 

(16) 

(17) 

(18) 

and 0~ are generalized forces corresponding to the Poincare parameters (the quasi-velocities) ut. 



728 S. A. Zegzhda and M. I? Yushkov 

Taking into account the fact that 

we can write Eqs (18) in the form 

aup 
-W; ~0,; Wf z---T’ 

ago (19) 

Equations (18) and (19), as follows from their derivation, can be applied to both holonomic and non- 
holonomic systems, with ideal constraints that are both linear and non-linear with respect to the velocities. 
Equations (18) and (19) were obtained by Hamel [18] in 1938 for the case when the time does not 
occur explicitly in the kinetic energy or in the constraint equations, and were obtained by Novoselov 
[9] in 1957 for the general case. In 1998 Rumyantsev [4] obtained these equations by generalizing 
Poincare’s and Chetayev’s equations. He established [5, p. 571, that these equations “. . . can be regarded 
as general equations of classical mechanics, including all known equations of motion as special cases”. 

As Hamel and Novoselov showed, the coefficients Wf can be converted to the form 

(20) 

In the case of linear homogeneous time-independent constraints, the coefficients Wf, as follows from 
(12) and (20), are 

Equations (19) in this case take the form 

d aT’ aT* +cp up aT’ -- - 

dt au+? ad -=Qx xp l av,p 

(21) 

(22) 

For the case when 1 = S, these equations, and also the expressions for the coefficients CL, as pointed 
out by Novoselov [9, p. 551, “. . . were first obtained by Voronets [19] in 1901 and these results were 
again obtained by Hamel [20] in 1904”. Further, Novoselov writes that in 1901 several earlier results 
by Voronets appeared in a note by Poincare [21], who obtained equations extremely close to Eq. (22). 
Poincare’s equations correspond to the case when the coefficients cP, are constant in Eqs (22) for 
1 = s, and the forces are expressed in terms of the force function 

Equations (22), therefore, can be written in the form proposed by Poincare [13] 

d aL* p o aL* 
--=Car”* avP 
dt au: 

-+X,L*; L*(q,u,)=T*+U, 

x, =b$ 
340 

(23) 

Here L*(q, u*) is Lagrange’s function while X, are linear differential operators, which form a basis of 
a certain s-dimensional Lie algebra [13, p. 431 with commutator 

[X,, X,] = x,x, - x,x, = c&x, (24) 

where cP, are structural constants of Lie algebra. It was noted in [13] that an arbitrarily chosen 
system of s operators acting in s-dimensional space, for which only the condition det [b:(q)] f 0 
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is satisfied, does not form a Lie algebra, since in this case the coefficients c& in (24) will be functions 
of go. 

The use of a tangential space and the vectors ap and a, in it enable the last expression in (23) and 
Eq. (24) to be written respectively in the form 

X, = a,- V 

[X,,X,l=a,~ V (a,. V)-a,. V (a,. V) = c&a,. V= c&X, 

It follows from this representation of the operatorsx, and their commutator that they also form a closed 
system of operators [4] for variable coefficients &. 

We will now introduce contravariant components of the vector Sy in the basis {a,), denoting them 
by 8’v!, i.e. assuming 

Zv,P =6y.aP 

In this case will have 

Sy = 6’v:a, = 6'v:bfe, = 6quea 

and, consequently 

6qU = b,o6’v: 

Suppose r(t, q) is the radius vector of an arbitrary point of the mechanical system. Then 

&-= ar v5q” = b,O $4~: = ti’v:xq (25) 

The operators x, hence enable the possible displacements 6r, occurring in the general equation of 
mechanics, to be represented in the form (25). 

Poincare made a surprising discovery. He established that mechanical systems exist in which the 
tangential space possesses a remarkable ,property. The basis a, = bfe, introduced in it, corresponding 
to quasi-velocities, is specified by those functions b:of the generalized coordinates for which the coefficients 
cP, in commutator (24) are constant. As already noted, the operatorsx, then form a basis of a Lie algebra. 
A characteristic example of a mechanical system with such a property of the tangential space is an 
absolutely rigid body rotating around a fixed point. The Poincare parameters in this case are, in particular, 
the projections of the vector of the instantaneous angular velocity onto the principle axes of inertia. 
Poincare’s equations (23) in this case become the dynamic Euler equations (see, for example, [2]). 

We will consider the case when the linear transformations (12) are inhomogeneous and time- 
dependent. Equations (19) in this case, as follows from (20) and (21), when there are both potential 
and non-potential forces, can be written in the form 

Here 

Two different representations of the coefficients c!$ follow from the fact that 

Equations (26) are called the equations of non-holonomic systems in Poincare-Chetayev variables [2, 
13, 151, and also the equations of motion of non-holonomic systems in quasi-coordinates [22, 231. 
Chetayev extended Poincart’s equations (23) to the case when the number of Lagrange coordinates is 
greater than the number of independent Poincare parameters, i.e. he obtained, using the Poincare 
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approach, Eqs (22) for the case when the coefficients cc= 0 while the coefficients cl,, are constant. 
He pointed out, however, that the equations he obtained also make sense for variables coefficients cl,, 
[12]. This extension of Poincare’s equations is carried out in [l-5, 14-171. 

In conclusion we will consider the two simplest forms of the expansion of the scalar products in 
Eqs (lo), proposed by Appele and Maggi. 

Introducing Appele’s function 

we can write 

Hence, using Eqs (10) we arrive at Appele’s equations 

aq* _ - 
i$- QA 

We obtain Maggi’s equations 

d aT aT _---- 
dt aq= aq= 

from Eqs (10) if we use expression (3) and also the fact that 

an .0 
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